
Structure-aware fuzzing
for real-world projects

Réka Kovács
Eötvös Loránd University, Hungary

rekanikolett@gmail.com

1

Overview

● tutorial, no groundbreaking discoveries

Motivation
● growing code size -> growing number of bugs
● big tech companies started to systematically fuzz their

code recently
● we all should

2

Quality assurance

● coding guidelines
● compiler warnings
● code review
● test suite
● static analysis
● dynamic analysis
● random testing

3

Let’s look at who’s using this technology today.

4

Who is fuzzing their code today?

● Microsoft
○ every untrusted interface of every product is fuzzed

(Security Development Lifecycle)
○ 670 machine-years devoted to fuzz Microsoft Edge &

Internet Explorer, more than 400 billion DOM
manipulations generated from 1 billion HTML files

○ Project Springfield (2016)
https://docs.microsoft.com/en-gb/microsoft-edge/deploy/group-policies/security
-privacy-management-gp
https://www.microsoft.com/en-us/security-risk-detection/

5

https://docs.microsoft.com/en-gb/microsoft-edge/deploy/group-policies/security-privacy-management-gp
https://docs.microsoft.com/en-gb/microsoft-edge/deploy/group-policies/security-privacy-management-gp

Who is fuzzing their code today?

● Google
○ Chromium is fuzzed continuously with 15.000 cores
○ external reporters invited to write fuzzers
○ OSS-fuzz (2016): 158 open-source projects including

Boost, Coreutils, CPython, FFmpeg, Firefox, LLVM,
OpenSSH, OpenSSL, …

https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://security.googleblog.com/2014/01/ffmpeg-and-thousand-fixes.html
https://opensource.google.com/projects/oss-fuzz

6

https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://security.googleblog.com/2014/01/ffmpeg-and-thousand-fixes.html

When did this all start?

7

History of fuzzing

● recently became a synonym for penetration testing
● term “fuzzing ”coined by prof. Bart Miller, University of

Wisconsin-Madison

● 1990: original “fuzzing” paper
Miller, B.P., Fredriksen, L. and So, B., 1990. An empirical study of the
reliability of UNIX utilities. Communications of the ACM, 33(12), pp.32-44.

○ completely random input to UNIX utilities
○ 25-33% crashed

8

History of fuzzing

● 1995: “Fuzz Revisited”: network apps, GUI apps
Miller, B.P., Koski, D., Lee, C.P., Maganty, V., Murthy, R., Natarajan, A.
and Steidl, J., 1995. Fuzz revisited: A re-examination of the reliability of
UNIX utilities and services. Technical report.

● 2000: Windows NT applications
Forrester, J.E. and Miller, B.P., 2000, August. An empirical study of the
robustness of Windows NT applications using random testing. In Proceedings of
the 4th USENIX Windows System Symposium(Vol. 4, pp. 59-68).

● 2006: MacOS applications: 22/30 GUI apps crashed
Miller, B.P., Cooksey, G. and Moore, F., 2006, July. An empirical study of
the robustness of macos applications using random testing. In Proceedings of
the 1st international workshop on Random testing (pp. 46-54). ACM.

9

History of fuzzing

“smart” fuzzers:

● 2011: CSmith https://embed.cs.utah.edu/csmith/
Yang, X., Chen, Y., Eide, E. and Regehr, J., 2011, June. Finding and
understanding bugs in C compilers. In ACM SIGPLAN Notices (Vol. 46, No. 6,
pp. 283-294). ACM.

○ generates well-formed C programs from scratch
○ created to test compilers
○ ~80 gcc bugs, ~200 clang bugs reported

10

History of fuzzing

“smart” fuzzers:

● 2012: SAGE
Godefroid, P., Levin, M.Y. and Molnar, D., 2012. SAGE: whitebox fuzzing for
security testing. Queue, 10(1), p.20.

○ discovers new corner cases efficiently by combining
symbolic execution and dynamic analysis

 if (x == 179000)
 abort(); // error

11

Great! I want to fuzz my code.
How do I go about it?

12

How does fuzzing work?

random
test case
generator

software
under
test

oracle

output OK

save it output not OK

John Regehr & Sean Bennett: Software Testing
https://eu.udacity.com/course/software-testing--cs258

13

Oracles

John Regehr & Sean Bennett: Software Testing
https://eu.udacity.com/course/software-testing--cs258

Weak
● crash (hardware, OS)

● rule violation of enhanced
execution environment
○ Valgrind
○ sanitizers

Medium
● assertions

Strong
● alternative implementation

○ differential testing
○ old version of software
○ reference implementation

● inverse function pair
○ e.g. encrypt/decrypt

● null space transformation

14

Input structure

e.g. web browsers

random bits
protocol-correct code

valid HTML
scripts, forms

“dumb” fuzzer

“smart” fuzzer

15

Program structure

“shallow” bugs

“deep” bugs

Black-box fuzzer
● no coverage feedback

Grey-box fuzzer
● lightweight instrumentation
● e.g. AFL, libFuzzer

White-box fuzzer
● heavyweight program analysis
● e.g. SAGE

fast

slow

low coverage

high coverage

16

Reuse of input seeds

Generative
● synthetize test cases from scratch
● complex, a lot of work
● e.g. CSmith

Mutation-based
● modify (non-)random test cases
● treats input as a bag of bits
● e.g. AFL, libFuzzer

input space

mutated input

synthetized
input

17

This is too complicated. I want to set it up easily.
What are my options?

18

Tools

● if your code has never been fuzzed: black-box fuzzers
○ probably will find some bugs

● white-box fuzzers are a lot of work

● excellent grey-box fuzzers!
○ AFL, libFuzzer
○ coverage-guided
○ can generate fairly structured inputs

■ e.g. JPEGs, IR code, primitive C programs

19

AFL: American Fuzzy Lop

http://lcamtuf.coredump.cx/afl/

● brute-force fuzzer with an instrumentation-guided
genetic algorithm

● uses a modified form of edge coverage to pick up
changes to program control flow

● needs user-supplied test cases that it can mutate
● result: a corpus of interesting test cases

20

AFL: American Fuzzy Lop

● algorithm roughly:
○ load initial test cases into a queue
○ take next input from the queue
○ try to trim the test case
○ repeatedly mutate the file
○ if any of the mutations resulted in a new state, add

the mutated output to the queue

21

#include <iostream>

int hi(const std::string &data, std::size_t size) {
 if (size > 0 && data[0] == 'H')
 if (size > 1 && data[1] == 'I')
 if (size > 2 && data[2] == '!')
 __builtin_trap();
 return 0;
}

int main() {
 std::string s;
 std::cin >> s;
 return hi(s, s.length());
}

22

23

libFuzzer

https://llvm.org/docs/LibFuzzer.html

● in-process, coverage-guided, evolutionary fuzzing engine
● code coverage information provided by LLVM’s

SanitizerCoverage
● generates mutations on the corpus of input data in order

to maximize the code coverage
● works without initial seeds

24

https://llvm.org/docs/LibFuzzer.html

libFuzzer: input generation

● generic random fuzzing
○ e.g. clang-fuzzer, clang-format-fuzzer, ...

https://llvm.org/docs/FuzzingLLVM.html

● custom mutators
○ Justin Bogner: Adventures in Fuzzing Instruction Selection

https://www.youtube.com/watch?v=UBbQ_s6hNgg

● structured fuzzing using libprotobuf-mutator
○ Kostya Serebryany: Structure-aware fuzzing for Clang and

LLVM with libprotobuf-mutator
https://www.youtube.com/watch?v=U60hC16HEDY

25

https://www.youtube.com/watch?v=UBbQ_s6hNgg

Protocol buffers

message Const {
 required int32 val = 1;
}

message BinaryOp {
 enum BinOp {
 PLUS = 0;
 MINUS = 1;
 MUL = 2;
 DIV = 3;
 MOD = 4;
 };
 required BinOp kind = 1;
 required Expr left = 2;
 required Expr right = 3;
}

26

message UnaryOp {
 enum UnOp {
 ABS = 1;
 SQRT = 2;
 };
 required UnOp kind = 1;
 required Expr arg = 2;
}

message Expr {
 oneof expr_oneof {
 Const constant = 1;
 BinaryOp binop = 2;
 UnaryOp unop = 3;
 }
}

Thank you!

27

